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Laboratory experiments reveal that, for increasing time, barotropic cyclones 
typically show an increasing steepness in their flow profiles. This implies that such 
vortices become barotropically more unstable. This has been confirmed by 
observations which are further discussed in a companion paper (Kloosterziel & van 
Heijst 1991). In  the present paper the evolutionary process is discussed. It is shown 
that the observed steepening of the flow profiles is mainly a nonlinear effect due to 
the advection of relative vorticity by the interior Ekman circulation. The linear 
Ekman pumping law is found to be a good approximation in the core of the vortices 
for O(1) Rossby numbers but at  larger radii the Ekman pumping is stronger in 
reality. Free-surface effects are shown to have a broadening effect, which can balance 
the nonlinear steepening if the Rossby number becomes sufficiently small or the 
Froude number sufficiently large. In  addition it is shown that for the classical spin- 
down problem with a free surface no expansion in the Froude number needs to be 
introduced. 

1. Introduction 
In this paper we address the evolution of stable (i.e. topologically invariant with 

time) axisymmetric vortices, generated by various techniques at  the centre of a 
rotating tank. Free-surface effects (see Carnevale, Kloosterziel & van Heijst 1991) 
tend to constrain them to such a location. It has furthermore been observed that if 
initially the vortices deviate slightly from circular symmetry, in the parameter 
regime studied here they rapidly tend to a circular form. The instability of laboratory 
vortices is discussed in a companion paper (Kloosteniel & van Heijst 1991). 

An overview of the contents of the paper is the following. In 92 the laboratory 
observations are discussed. After a short description of the laboratory set-up in 92.1, 
in 92.2 two examples of evolving flow profiles of stable cyclones are presented. The 
velocity profiles of a so-called ‘collapse vortex’ and a ‘sink vortex’ show a distinct 
‘ steepening ’ as time progresses. Beyond a certain critical steepness such vortices 
become unstable to wavenumber-2 perturbations which is in accordance with the 
results of, for instance, Carton & McWilliams (1989). Further details concerning the 
amplitude decay of a vortex and the shift of the position of its maximum velocity are 
also presented in $2.2. These data show that the decay rate is faster than linear 
Ekman decay whereas the shift of the peak velocity is much faster than diffusive 
spreading. 

In  93 we analyse the causes for the observed evolution characteristics. The 
observed timescale of decay indicates that the evolution of the laboratory vortices is 
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dominated by the Ekman circulation. The evolution problem is therefore attacked 
by means of an expansion in the (small) Ekman number E .  A further systematic 
scaling analysis shows that there are three other non-dimensional parameters that 
determine the way a flow profile evolves : the Rossby number, the rotational Froude 
number and a parameter that compares the diffusive timescale to the Ekman decay 
time. However, the latter two parameters are very small in the laboratory 
experiments. It is shown in $3.2 that  nonlinear effects, i.e. advection of relative 
vorticity, induce the observed steepening of the laboratory profiles. Without 
advection of relative vorticity the well-known linear Ekman dynamics merely leads 
to an exponential, uniform decay of the vortex. Free-surface effects, that is, effects 
represented by a non-zero Froude number, are shown to have a broadening effect (see 
$3.1),  but under typical laboratory circumstances this effect is negligibly small. 

A key element to the analysis of $ 3  is the relation between the vertical Ekman 
pumping a t  the bottom and the local interior vorticity. For this we tentatively took 
the well-known Ekman pumping law that follows from the quasi-stationary, linear 
boundary-layer equations. With this simplifying approximation the observed decay 
rates and shift rates of the peak velocity are well accounted for. The reason is that 
from the centre to the peak of the vortex, the vortex is close to solid-body rotation 
and the linear Ekman pumping law is known to be approximately valid even in the 
nonlinear regime (Greenspan 1968). A direct comparison of the predicted evolution 
based on the linear pumping relation with the observations shows that the law is not 
valid beyond the peak of the vortex. The actual Ekman pumping is somewhat 
stronger in that region where the velocity decreases than the linear law predicts, and 
the steepening of the profiles in the numerical solutions is correspondingly less 
pronounced than in the laboratory observations. 

2. Laboratory experiments 
2.1. Generation techniques 

The laboratory experiments were performed in a cylindrical Perspex tank placed on 
top of a rotating table (see figure 1) .  Velocity measurements were performed by 
means of streak photography of tracer particles floating on the free surface ; for this 
purpose a remotely controlled photo camera was mounted in the rotating frame a t  
some distance above the fluid surface. Velocities werc calculated by measuring the 
lengths of the streaks on the photographs. Dye-producing crystals dropped in the 
tank provided qualitative information about the flow below the surface. 

Cyclonic vortices were created by applying the so-called ‘collapse technique ’, the 
basic set-up of which is shown in figure 1 :  the rotating tank is filled with a 
homogeneous fluid, and a bottomless cylinder with an internal diameter 2R, is placed 
concentrically in the tank, with the fluid inside the inner cylinder at a level differing 
from that outside it. When the inner cylinder is withdrawn vertically, a gravity- 
driven flow arises in radial direction. This radial motion is deflected by the Coriolis 
force, and after a period of typically K / Q  an equilibrium state is reached in which the 
flow is close to purely azimuthal. When the difference in level AEI is of the same order 
of magnitude as the average water depth, lifting of the cylinder ususally results in a 
vigorous turbulent flow in the centre of the tank. Although this flow is initially three- 
dimensional, after typically 2-3 rotation periods the fluid motion is observed to 
become nearly two-dimensional, taking the appearance of a horizontal swirl flow 
around the axis. Inertial waves are clearly involved in this process (see Greenspan 
1968), but a firm theoretical basis explaining the two-dimensionalization of the 
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Removable inner cylinder 

FIGURE 1. A schematic drawing of the laboratory set-up used for producing barotropic vortices. 
The diameter of the tank is 92.5 cm and it has a depth of 30 cm. The working depth A of the tank 
was varied between 5 cm and 25 cm (measured at rest). The Coriolis parameterf = 2 8  (in rad s-') 
was varied in the range 0.9 s-l to 2.1 s-l (a denotes the angular velocity of the turntable). Further 
details for various experiments are given in table 1. 
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FIQURE 2. (a) The radial distribution of azimuthal velocity of a typical cyclonic, barotropic vortex. 
Measured velocities are indicated with black dots while the curve is a fourth-order polynomial. 
(b) The radial vorticity distribution, derived from the polynomial approximation of the velocity 
field. 

vortices is to the best of our knowledge still lacking. For our purposes here, it suffices 
to note that whenever strong vertical motions occur, they are quickly subdued. As 
can be understood from conservation of angular momentum, cyclonic vortices are 
created by taking the fluid level inside the inner cylinder lower than outside. 

Stable cyclonic vortices were also created by continuously withdrawing fluid from 
a sink located at the centre of the tank bottom. The radial motion induced by the 
sink is deflected in the cyclonic direction and when the sink forcing is stopped the 
flow is observed to become purely azimuthal within a few rotation periods. 

Anticyclonic vortices are not discussed here because they are usually centrifugally 
unstable if the Rossby number is not small (see Kloosterziel & van Heijst 1991). 

2.2. Observed evolution of stable cyclones 
We determine the structure of a circular vortex by measuring the azimuthal velocity 
v as a function of the radius r ,  as measured from the vortex centre. A typical example 
of the velocity distribution of a laboratory cyclone is provided in figure 2(a) .  The 
experimental data are denoted by dots and the solid curve is a polynomial fit to the 
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FIGURE 3 .  The radial distribution of the azimuthal velocity measured at  the free surface of a 
cyclonic vortex created with the collapse technique at successive times after withdrawal of the 
cylinder: (a) t = 19.2T, ( b )  38 .4T,  ( c )  48.OTand ( d )  57.6T, with T = 6.25 s the rotation period of the 
turntable. Experimental data are denoted by black dots while the curves are fitted to the data. The 
scaled curves (for an explanation, see text) are presented in (e). ( f )  The scaled vorticity profiles 
corresponding to the curves fitted through the data. Experimental parameters are: = 13.8 cm, 
AH = 10.9 cm, R, = 14.5 cm, l2 = 1.0 s-l. 

r/rmax TITO 

data. Information about the vorticity can be obtained by using the curve fitting the 
velocity data as a representation of v(r); the vorticity distribution w ( r )  is then 
calculated according to 

1 d rw(r) 
w ( r )  = -- 

r dr * 

The vorticity profile associated with the azimuthal velocity distribution of figure 2 ( a )  
is shown in figure 2 ( b ) .  Obviously, the cyclone has positive vorticity in its centre, 
while it is enclosed by an outer region of negative vorticity. According to figure 2 ( b ) ,  
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the vorticity takes a maximum value near the axis. In  particular at  smaller radii the 
vorticity profile is strongly dependent on the shape of the v(r) profile, but because 
data are lacking in this centre region, the exact vorticity distribution near the origin 
is uncertain. Observational evidence indicates that for the laboratory vortices 
studied here the vorticity amplitude is always maximal close to the centre of the 
vortex. 

For obtaining a reasonably accurate picture of the evolution of the form of the flow 
profiles, low-order polynomials are not a good choice for fitting the data with. In 
most cases the data can only be poorly fitted by such polynomials. The ‘vorticity’ 
derived by differentiation of the polynomial in such cases does not provide a reliable 
representation of the actual vorticity distribution in a vortex. Instead we used a 
family of curves that did a much better job. These curves are of the form 

v ( r )  = UP(r /L)  exp{ -;(r/L)*},  

with U an appropriate velocity amplitude, L a lengthscale and P a polynomial with 
P(0)  = 0. The ‘vorticity ’ corresponding to each of these polynomials is a polynomial 
solution of the Laguerre equation. It was found that at  each instant the observed 
flow profiles could closely be approximated by a member of this family of curves. 

In figure 3 ( a 4  the velocity distribution of a barotropic cyclonic eddy is fitted 
with one of these curves at four consecutive times. This vortex was produced with 
the collapse technique. The profiles are seen to be everywhere close to the measured 
velocities. The difference in form of the velocity distributions is elucidated by scaling 
the fitted curves onto each other. For this each profile is scaled with the maximum 
velocity vma, and the radial coordinate with the position of peak velocity rmax. The 
scaled profiles thus all have a maximum at R = r/rmax = 1 of V(R = 1) = 1.  The 
result is shown in figure 3 ( e ) .  It is seen that for increasing time the velocity profiles 
fall off faster to zero for R > 1. The increased steepness of the velocity profiles implies 
that the amplitude of the negative vorticity becomes larger relative to the amplitude 
of the core. This can be seen in figure 3 0  where the scaled vorticity profiles 
corresponding to the curves of figures 3 (a)-3 ( d )  are shown. Each profile has been 
scaled by its amplitude at r = 0 and the radial coordinate by the position ro at which 
the vorticity changes sign. 

In figure 4 a similar sequence is shown but now for a sink vortex. There is 
somewhat more scatter in figures 4(c) and 4 ( d )  but in each of figures 4 ( a ) 4 ( d )  the 
fits do appear to provide a reliable picture of the actual structure. Figure 4(f)  
therefore indicates that with increasing time the sink vortex also considerably 
steepens. 

This means that the vortices are evolving towards a barotropically more unstable 
state (see Gent & McWilliams 1986; Flier1 1988; Carton & McWilliams 1989), and this 
can lead to dramatic changes in the character of the flow (see Kloosterziel & van 
Heij st 1991). 

A main difference between the sink vortex and the collapse vortex is that sink 
vortices similar to that of figure 4 were never observed to become unstable whereas 
collapse vortices like that of figure 3 may become unstable. The reason for this is that 
the sink vortices start with a profile with hardly any negative vorticity around the 
core. In fact, the curve shown in figure 4(a) is very close to 

44 = U / ( r / L )  (1 -exp ( -;(r/L)z)l, 

which for large r tends to potential flow. This is also clear from figure 4 (f) where the 
corresponding scaled vorticity profile is seen to have almost no negative vorticity. 
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FIGURE 4. The azimuthal velocity distribution measured a t  the free surface of a sink-induced 
cyclonic barotropic vortex a t  successive times after the forcing was stopped: (a) t = 8.9T, ( b )  14.4T, 
(c) 27.6T and (d )  35.5T, with T = 8.4 s the rotation period of the turntable. Experimental data are 
denoted by black dots while the curves are fitted t o  the daba. The scaled curves (for an explanation, 
see text) are presented in ( e ) .  (f) The scaled vorticity profiles corresponding to the curves fitted 
through the data. Experimental parameters are : R = 12.4 cm, Q = 0.75 s-'. 

The collapse vortex of figure 3 starts with a larger amplitude of negative vorticity 
(compare figures 3 f and 4 f ) .  The curves shown in figures 3 ( c )  and 3 ( d )  are very 
close to 

V ( T )  x U ( T / L )  exp{ -!j(r/L)2}, 

which is known to be a linearly unstable vortex. According to Gent & McWilliams 
(1986) and Carton & MeWilliams (1989) this profile is unstable to wavenumber-2 
perturbations if the flow is inviscid. The vortex of figure 3 did not show the growth 
of such an instability but similar vortices are sometimes (depending on the initial 
conditions) observed to  transform into a tripolc as a result of the growth of a 
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FIGURE 5. (a)  The position of the peak velocity rmaa and ( b )  peak velocity v,,, m a function of the 
dimensionless time t * .  In each case the velocity amplitude in ( b )  has been scaled by the first of each 
observation series. Details about the four experiments are given in table 1.  Four of the observed 
velocity distributions of experiment 3 (symbol 0 )  have previously been shown in figure 3 and four 
of the profiles of the sink vortex (experiment 4; symbol +) in figure 4. The dotted line in (a )  
indicates the shift of the peak velocity due to diffusion. The solid line in ( b )  indicates the 
exponential decay of linear Ekman dynamics whereas the dotted line indicates the correction for 
colder water (see text). 

wavenumber-2 instability (see Kloosterziel & van Heijst 1991). Clearly the Ekman 
dissipation will damp the growth of the perturbation. So, the instability only 
manifests itself if the amplitude and the steepness are sufficiently high initially 
because otherwise the Ekman damping dissipates the flow before a critical steepness 
is reached and before a perturbation can grow to finite amplitude. 

In analogy to what Greenspan & Howard (1963) pointed out for the spin-up of a 
fluid contained in a rotating cylinder with a rigid lid, the Ekman boundary layer is 
likely to play an essential role in the spin-down or spin-up of the vortices in the 
present experiments, much more than lateral frictional effects. In view of the well- 
known results concerning the linear Ekman dynamics (see Greenspan 1968 ; Pedlosky 
1979) the appropriate timescale for the evolution of the vortices will be the Ekman 
time TE. Based on the Ekman number E = v/(S2H2),  the Ekman time is 

TE = H/(vO) i ,  (1) 

where H denotes the depth of the fluid layer at the tank centre when the fluid is in 
solid-body rotation (i.e. with no vortex present) and v the kinematic viscosity of 
water. If one introduces the non-dimensional time t* = t / T E ,  and the spin-up or spin- 
down of the free-surface system is considered to consist of one-half of the problem of 
Greenspan & Howard, then the decay of the relative flow would be expressed as 

w(r; t*) = w,,(r) e+*, (2) 

where y z 1. This result, however, can only be expected to be valid for very small 
Rossby numbers. 

That the decay of the laboratory vortices does not accord with (2) is clear from the 
observation that the functional form of the velocity distributions generally changes 
with increasing time (see figures 3 and 4), while the position of maximum velocity 
shifts outwards. The position of the peak velocity rmax as a function of the 
dimensionless time t* for four different experiments is shown in figure 5 (a) .  In  figure 
5 (b )  the maximum velocity TJ,,, for these experiments is shown. The relevant details 
pertaining to these experiments are given in table 1. Figure 3 shows four profiles of 
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Exp. no. Vortex type SZ (s-l) H(cm) AH(cm) TE (8) R, (cm) 
1 0  collapse 0.94 19.8 17.0 187 14.5 
2 A  collapse 0.75 13.8 10.3 146 14.5 

collapse 1 .o 13.8 10.9 121 14.5 3 0  
4 f  sink 0.75 12.4 131 - - 

TABLE 1. Experimental parameters for four laboratory experiments. H denotes the mean depth of 
the fluid layer, equal to the depth measured after an experiment when the table has been brought 
to a standstill and the fluid is motionless. With no vortex present the free-surface has the form 
z (r )  = H +  (QP/2g) r2 and mass-conservation shows by integration that H is related to H according 
to H = H +  (sZp/4g) r;, where r, is the tank radius. 

experiment 3 whereas four profiles of experiment 4 are shown in figure 4. The Ekman 
time TE, defined by (l) ,  has been calculated for a kinematic viscosity 
v = 1.14 x 

Linear Ekman dynamics predict pure exponential decay of the flow field and the 
position of peak vorticity would in that case be fixed. One might think that lateral 
diffusion accounts for the shifting peak. Typically diffusion leads to a shifting peak 
according to the formula 

rmax(t) = [2vt + r ~ , , ( 0 ) 1 ~  

(see Kloosterziel 1990), and for comparison this is shown in figure 5 ( a )  as a dotted 
line, starting with a value for experiment 4. It is seen that this shift rate is much 
smaller than the measured shift rate. 

The velocity amplitude w,,, (peak velocity) decreases close to exponentially, as 
can be inferred from figure 5(b ) ,  where w,,, is plotted logarithmically versus t * .  The 
data shown here can be approximated very closely by straight lines with a slope of 
approximately y = 1.20. The amplitude thus decays according to 

cm2 s-l, a value appropriate for water at  a temperature of 15 "C. 

vmax(t*) = vmax(t,*)exp [-~(t*-to*)l, (3) 

except for small t,* where deviations from this behaviour can occur. The Rossby 
number is not very small at these early stages, and strong nonlinear effects are 
important then. The deviation is especially clear for experiment 1 ; in figure 5 (b )  the 
amplitude decay is initially much faster for this experiment than for the other three 
experiments. The main difference is that the Rossby number for experiment 1 is at 
the earliest times approximately 3 whereas for the other ones it is close to 1. 

The solid line in figure 5 ( b )  denotes the pure exponential decay expected from 
linear Ekman dynamics. This line has a slope y = 1. Diffusion leads to an acceleration 
of the decay rate but for vortices of this size it is a very small effect (see $3) and far 
too small to explain the faster decay rate. 

It must be admitted here that the water temperature was not measured at the time 
the experiments were performed, and in some cases the actual water temperature 
may have been lower than 15 "C. For a temperature of 10 "C the kinematic viscosity 
is about 1.304 x cm2 s-l so the spin-down time may have been less than listed in 
table 1. The correction to the decay rate is indicated by a dotted line in figure 5 ( b ) .  
This line has a slope of y = 1.07. It is seen that this cannot account for the faster 
decay rate of the laboratory vortices. 

In the experiments no cover was used to reduce the air drag at the free surface, but 
this can also be shown to be of minor importance (see $3.2). The reason for the 
deviation from the linear Ekman damping will be discussed in $ 3 :  it is due to 
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(weakly) nonlinear effects. Nevertheless, the timescale as given by (i), associated 
with the spin-down mechanism provided for by the bottom Ekman layer, is found to 
apply very well to the present problem. 

3. Spin-down analysis 

equations of motion are 
For circularly symmetric flows, away from the viscous boundary layers, the 

(4) 
au au au v2 iap a i a ru  -+ u-+ w ---- 2Qv = ---+ v--- 
at ar a Z  r p ar arr ar ’ 

and the continuity equation is 
i a ru  aw 
-- +--0.  
r ar az (7) 

In order to facilitate the analysis, cylindrical coordinates ( r ,  8, z )  have been 
introduced, with the vertical ( z )  axis coinciding with the axis of the tank, pointing 
upwards, and with the origin r = 0 at the common axis of the vortex and the tank. 

In  (4)-(0) P stands for the reduced pressure, which for a rotating system is 

P = p+pgz-+Q2r2, (8) 
where p is the actual (thermodynamic) pressure in the fluid, and g the Earth’s 
gravitational acceleration. 

All motion is confined within the region 

where the free-surface elevation zlree has been written as a sum of the basic parabolic 
shape plus a deviation q .  Here r, denotes the tank radius (46.25cm). The 
perturbation 7 from the parabolic shape is the ‘dip’ in the free surface that 
invariably accompanies the presence of a vortex, while H is the depth of the fluid at 
the centre of the rotating tank in the absence of any relative motion. 

In  barotropic flows like the ones studied here, vertical variations in the 
aximuthal velocity field are confined to a thin boundary layer at  the bottom with 
an approximate thickness 8, = ( v /Q) i ;  under typical laboratory circumstances 
S, - 1 mm. The convergence of the horizontal flow in the bottom boundary-layer 
region induces a meridional circulation in the interior, that is, in the region outside 
the boundary layer. If the azimuthal flow has an amplitude U - the value of, say, the 
maximum velocity v,, -then the secondary motion in the interior typically has an 
amplitude of O(E4U). Typical values of the Ekman number for the laboratory 
experiments described here are O( One well-established way of attacking the 
decay problem consists of seeking an expansion in the small parameters of the 
system. From the above it will be clear that the Ekman number certainly can serve 
as such, but other possibly small parameters can only be found by systematically 
scaling the equations, and this will be done below. 
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Without getting into the details here, it will be sufficient to  indicate some of the 
steps (see Greenspan 1968 and Pedlosky 1979). The equations of motion and 
continuity are non-dimensionalized by using the following scales : 

[ u , v , w , P , q ] = U  Ei,l,Efr,pQL,- , [ r ,  z ,  t ]  = [L ,  H ,  E-iQ-']. [ 2QL1 9 

Here U and L denote a typical velocity scale and a horizontal lengthscale, 
respectively. Hereafter all the dependent and independent variables are understood 
to be non-dimensional. 

With these definitions, the non-dimensional expression for the free-surface shape 
becomes 

h = zrree/H = 1 + l$r2 + 2 ~ F q .  (9) 

I n  this expression two other characteristic parameters appear : the rotational Froude 
number F and the Rossby number E ,  which are defined by 

F = (s2L)2/gH, E = U/(sZL). (10) 

In  conjunction with the equations of motion and the continuity equation, the 
boundary conditions for the vertical velocity have to be considered. At the free 
surface we have non-dimensionally 

w(r,z  = h) = 6{2F$+u;}, 

where 6 = H / L  is the aspect ratio. The dimensionless quantities u, v, w, P and q are 
expanded in powers of Ei in the interior region. These power series are substituted 
in (4)-(7) and (l l) ,  and terms multiplied by the same power of Ei are subsequently 
collected. To lowest order the pressure is hydrostatic and integration of the 
continuity equation then shows that 

1 aru 
w(r,z) = w(r ,z  = 0)-S----z. r ar 

By systematically collecting terms of the same order the following set of coupled 
equations is found which is correct to O(E$: 

V2  a7 s-+2v = 2--, 
r ar 

av TE 2 -+U(Ew+2) = -v 0, 
at T d  

a7 i a w(r, z = 0) 
6 '  

2F-+--{ruh} = 
at r a y  

where V2 is the horizontal Laplacian, Td the timescale associated with horizontal 
diffusion of momentum, and w the vorticity of the O(1) interior flow : 

L2 l a  
r ,  T -- w = --(rv). v2 = --- a i a  

a r r a r  d -  v '  r ar 

Equation (15) has been derived by using (12) for z = h in conjunction with (11). 
The set (13)-( 15) has to  be supplied with the bottom boundary condition for the 
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TE rmax (cm) umax (cm s-’) F T E J T ,  E 

1 .o 8.9 4.2 0.0067 0.017 0.45 
1.99 10.4 1.4 0.0088 0.013 0.13 
2.49 10.7 0.8 0.0097 0.012 0.07 1 
2.98 10.9 0.5 0.010 0.012 0.044 

TABLE 2. Typical values of some relevant parameters during various stages of decay of the cyclonic 
laboratory vortex shown in figure 3. Times are the same as in the caption of figure 3, but now 
measured in terms of the Ekman time. 

vertical Ekman pumping, i.e. the right-hand side of (15) has to be specified. The 
boundary condition for UI at z = 0 (at the ‘top’ of the bottom Ekman layer) is found 
by intcgrating the continuity equation for the boundary layer. This yields 

l a  
w(r,z  = 0) = +&-rv 

r ar 

if the steady, linear boundary-layer equations are used to determine the O( 1 )  flow in 
the boundary layer. This identity states that the vertical Ekman pumping at the 
bottom is proportional to the vorticity of the interior motion. 

Equation (16) is only valid for flows with vanishingly small Rossby numbers. No 
general law is known for arbitrary swirl flows with finite Rossby numbers. Often the 
steady Ekman flux calculations of Rogers & Lance (1960) are used. Their results are 
only valid for fluid in solid-body rotation over an infinite rotating disk. In the core 
of a typical vortex the fluid is close to solid-body rotation so one might apply their 
law locally. Beyond the position of peak velocity the fluid has decreasing circulation 
and there Rogers & Lance’s Ekman pumping law cannot be applied. Instead of 
introducing some arbitrary assumptions we will therefore use (16) below for vortices 
with finite Rossby numbers. Comparison of the observations with the predictions 
based on (13)-( 15) will show to what extent (16) is a good approximation. In  what 
follows, our aim is to determine the evolution of v ,  and (14) has to be solved for this. 
The higher-order corrections for the azimuthal flow are not considered. 

In (13)-( 15) three parameters appear : the Rossby number E ,  the rotational Froude 
number F and the ratio of Ekman time and diffusive time TE/Td. In table 2 typical 
values are given, which correspond to the four profiles shown in figure 3. The time 
is the elapsed time since the experiment was started and is given in units of the 
Ekman time, with t = l.OTE corresponding to the profile shown in figure 3(a) .  For the 
lengthscale L the approximate position of peak velocity rmax was taken, and for the 
velocity scale U the peak velocity vmax. The ordering in magnitude is immediately 
apparent ; at all times one has F < TE/Td < E .  Both F and TE/Td are very small in this 
case, which is representative for most of the laboratory vortices studied here. 

3.1. Linear spin-down 
For arbitrary initial conditions and parameter values of E ,  F and TE/Td the set 
(13)-( 15) can only be solved numerically but before doing so we first investigate what 
the typical effect is of diffusion (non-zero parameter TE/Td),  free-surface deform- 
ability (non-zero Froude number), and nonlinearities (non-zero Rossby numbers). 
We start here with the linear perturbations to linear Ekman decay. These 
effects will only be important in the final stages of decay when the Rossby number 
becomes as small as the Froude number and the diffusion parameter (see table 2). 
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We get the following set of equations when we put e = 0:  

a7 i a 1 1  a 
U'-+-- { ru( i  +lJr2)} = ---rv, 

at rar 2rar 

-+2u av = -v TE 2 v. 
at Td 

Free-surface effects will for the moment be neglected, and to lowest order (18) 
shows that u = !p. Substitution in (19) leads to the following equation for v :  

Putting d ( r ,  t )  = etv(r, t ) ,  this reduces to the diffusion equation 

awl T~ 
at T~ 
- _  - -v v'. 

For vortices of small horizontal dimension relative to the size of the tank the results 
of Kloosterziel (1990) are applicable. A outward shift of peak velocity proportional 
to ti and a decay rate proportional to something between t-i and t-i are expected to 
be approximately valid. As a correction to linear Ekman decay, diffusion thus leads 
to  an outward shift of peak velocity and an accelerated decay rate. In view of the 
smallness of the diffusion parameter both effects are under typical laboratory 
circumstances too small during most of the evolution (see table 2) to account for the 
observed discrepancy with the linear Ekman dynamics. 

Next we investigate the combined effect of the free-surface deformability and the 
variation in fluid-layer depth and diffusion will for the moment be neglected. The 
general equation for the free-surface perturbation is obtained by substituting ( 17) 
and (19) in (18), while simultaneously putting Td = 00 : 

This equation is also derived in Cederlof (1988) where the effect of the free-surface 
deformability in the classical spin-up problem is studied. 

For most initial conditions, solutions of (22) in closed form are hard to find. An 
exception is the exact solution to the classical spin-down problem presented in the 
Appendix, for which no expansion was needed. For the case of a vortex an 
expansion in F provides useful information. We put 

and substitute this in (22). This leads to the following sequence of differential 
equations. At lowest order : 
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and at O ( F )  : 

The higher-order equations will not be of any concern here. From (24) we have 

where [ ( r )  gives the free-surface perturbation, to lowest order in both Rossby and 
Froude number, at t = 0. After substitution of this result in (25), multiplication by 
e+' and integration over r and t ,  the following result is derived: 

where M ( r )  is the mass deficit, relative to the equilibrium distribution, due to the 
zero-order, free-surface perturbation at  t = 0 : 

M(r)  = I [ ( r )  r dr. 

If V(r)  denotes v(r, t = 0 ) ,  the evolution is up to O(F) 

The mass-deficit term is always negative for cyclones, so the term within square 
brackets is positive everywhere for cyclonic vortices. This implies that the decay rate 
is Zessened by the O(P) effects as compared to the pure exponential decay of the linear 
Ekman dynamics. 

The effect of a flexible free surface and an outward-increasing, basic layer depth 
can easily be understood as follows. Effectively the spin-down of the fluid is a 
consequence of the radial outward displacement of fluid particles by the interior 
Ekman circulation : angular momentum conservation shows that the decrease in 
azimuthal velocity of a particular fluid element is directly related to its net radial 
displacement. The free surface, however, can absorb part of the radial mass flux by 
simply raising itself, that is, the 'dip' in the free surface fills, and this effect is 
represented by the mass-deficit term in (29). A radially increasing equilibrium depth 
(the parabolic free surface) similarly decreases the magnitude of the radial 
displacement of fluid elements relative to the case of a layer of fluid of constant 
depth; this is represented by the first term within square brackets in (29). 

The free-surface deformability and depth variations can induce a shift in the peak 
velocity, as the following example shows. Consider the vortex with the simple 
Gaussian shape that was seen to match well with the observations of the vortex of 
figure 3 in its final stages of decay (figures 3c and 3 4 .  For such vortices the free- 
surface perturbation is (non-dimensionally) 

(30) 

where the constant co has a value that makes M ( r T )  = 0. The tank radius is a little 
larger than four times the position of peak velocity for the vortex of figure 3 ( c ,  d ) .  The 
position of the peak velocity corresponding to (30) is r,,, = 1, so for illustrating the 
consequences of (29), we take for the non-dimensional tank radius rT = 4. With (30) 

[ ( r )  oc co - e+' 
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FIGURE 6. The terms that determine the first-order correction in (29), here for the case of the 
simple Gaussian vortex (see text). 

r 

given, the mass deficit M is easily calculated. The result is shown in figure 6, where 
the terms that determine the first-order correction in the evolution, according to (29), 
are shown together. Note that the vortex stretching due to  the free-surface 
deformability is by far the larger of the two. 

It is seen in figure 6 that  the O(F) term has a maximum at a radius larger than the 
position of peak velocity of the vortex at t = 0. As time increases, the position of peak 
velocity will thus shift outwards, while the amplitude simultaneously decays at a 
rate slower than with e-t. This is also the case for characteristic other forms of the 
laboratory vortices. But, as is seen in table 2, the Froude number for the laboratory 
vortices is very small and the extra shift and slower amplitude decay due to free- 
surface effects will only play a role a t  very late times in the evolution. 

3.2. Nonlinear evolution 
In  order to isolate the nonlinear effects we put the Proude number and the diffusion 
parameter equal to zero in (13)-(15) to obtain 

av 
-+u(EW+2) = 0, 
at 

i i a  
ru = ---rv. 

i a  -_ 
r ar 2 r ar (33) 

Equation (33) shows that the radial component of the Ekman circulation is u = ~, 
and by substitution in (32) we find 

av - _  - - (+3+l )v .  
at (34) 
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This is a disguised form of Wedemeyer's equation (see Wedemeyer 1964; Venezian 
1970). Wedemeyer's equation can easily be transformed into a damped wave 
equation by substitution of v' = ierv and introduction of the variable s = 3.". This 
can further be solved for a given initial velocity distribution with the method of 
characteristics. Let us merely indicate here what the behaviour of solutions of this 
equation will be. 

Equation (34) tells us a few things. First of all, it  may be noted that in the core 
of a cyclone, where o is positive, the rate of decay will generally be larger than in the 
linear case ( E  = 0). In  this region the advection of vorticity by the radial component 
of the Ekman circulation, u, increases the decay rate. At larger radii, the rate of 
decay is smaller than in the linear case since the vorticity will generally be negative 
there, except for potential flow. It is thus anticipated that this combination of effects 
leads to the steepening of a velocity profile. It may be remembered here that 
the phrase steeper flow profile is used here to mean one for which the velocity falls 
off to zero faster for increasing r > r,,,. 

For small-enough Rossby numbers, an expansion can be used to further investigate 
the behaviour of solutions of (34). For that purpose we write 

v = VO+SWl+ ...) w = o o + E W 1 +  ..., (35) 

and substitute this in (34). Collecting terms of the same order in E ,  the following 
sequence of equations is obtained. At lowest order 

and a t  O(e) 

avo -+ wo = 0, 
at 

av, -+wl at = -&lovo. 

(36) 

(37) 

I d  
r dr (38) Putting V o ( r ,  t = 0) = V ( r ) ,  wo(r, t = 0) = - - ( rV)  = 9, 

and demanding that a t  t = 0, w1 = 0, the solutions of the above equations are 

w,,(r, t )  = e-tV(r), wl(r, t )  = (e-2t-e-t)@(r) V ( r ) ,  

and so on for higher-order terms. The solution of (34) can therefore be written as the 
series 

v(r,  t ; a )  = e+V(r){l +E(e-t-l)@+O(e2)}. (39) 

For small E the lowest-order correction will dominate over the higher-order terms. 
To illustrate the consequences of the lowest-order correction, the function 

f ( r ; a )  = V(r )  ( l - a ~ ) ,  V ( r )  = +re-+'' (40) 

is plotted in figure 7. The parameter a is interpreted as 

a = &(l -ePt), 

and an increasing value of a thus corresponds - for fixed e - to increasing time. In 
figure 7 the result is shown for a = 0,0.2 and 0.5. The curve with a = 0 corresponds 
to the curve that was fitted to the data in figure 3(c) .  The curves shown in figure 7 
thus give an indication of the evolution of a typical vortex to lowest order in Rossby 
number. It is clear that the nonlinearity induces a shift in the position of peak 
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FIGURE 7. The function f ( R ;  u ) ,  defined by (40), for three different values of the parameter a. 
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FIGURE 8. (a)  The initial condition (solid line) for the numerical integration of (13)-(15) and ( b )  the 
result of the integration. The black dots denote the observed velocity distribution from experiment 
3. Times are (a )  t = 0.41T, after starting the experiment and ( b )  t = 2.49TE. The relevant parameter 
values at the start of the integration were E = 1.16, TE/Td = 0.028, F = 0.0042. (c) The initial 
condition for the integration starting at  a later time. Relevant parameters are given in the top row 
of table 2. (d )  The result is like ( b ) ,  compared with the observation a t  time t = 2.49TE. 
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TE t l  TE 

FIQURE 9. Graphs comparing the (a) amplitude decay and (b) shift of peak velocity of the numerical 
integration of (13)-(15) with the observations of experiment 3. The initial condition is shown in 
figure 8(a).  In (a) and (b) the solid line denotes the decay with all effects included, and the dotted 
line the nonlinear evolution without free-surface effects or diffusion. The dashed line in (a) denotes 
the linear Ekman decay. 

velocity and a form change. In fact, since the curves almost coincide over most of the 
range r > rmax, a rescaling of these curves would show a distinctive steepening of the 
profile, which is in accordance with the laboratory observations. Moreover, the rate 
of decay is speeded up by the nonlinearity, and is faster than with e-t. For high 
Rossby numbers the steepening and faster decay are more pronounced than for small 
Rossby numbers. 

The complete set (13)-( 15) has numerically been solved while using the Ekman 
pumping relation (16). The evolution of w has been determined by solving (14) with 
a Crank-Nicholson scheme for the diffusive part and an upwind differencing scheme 
for the advective part. In order to determine the radial component of the Ekman 
circulation u, a second-order ordinary differential equation for u was obtained by 
elimination between (14)  and (15 )  and using (13). This equation was solved with a 
shooting method with the boundary condition u = 0 at r = 0. At the tank wall one 
finds by integration of (15) that u should satisfy (see the Appendix) 
u(rT,  t )  = &(rT, t ) / ( l  +prg). 

To illustrate the results the vortex of figure 3 is considered (experiment 3; see 
tables 1 and 2). As initial condition for (13)-(15) the fit through the data at the 
earliest time was chosen. This initial condition is shown in figure 8(a) .  The values of 
the relevant parameters at the start of the numerical integration of the equations are 
given in the caption. In figure 9(a)  the amplitude decay of the numerical solution is 
compared with the observed decay of this vortex. The solid line denotes the result 
with all effects retained, i.e. with non-zero E ,  F and diffusion. The dotted line 
represents the result of an integration for which only the nonlinearities were retained, 
that is, with no diffusion and no free-surface effects. As was to be expected from the 
magnitudes of the Froude number and the diffusion parameter, the difference is very 
small. The dashed line gives the pure linear Ekman decay, with no diffusion, free- 
surface effects or nonlinearities. It is seen that the numerical integration closely 
matches the observations and gives the correct slope. The decay rate at the very 
early times is a little too high so that at later times the simulation amplitude is 
systematically slightly lower than the observed amplitude. Since the solid line and 
the dotted line are very close it can be concluded that the accelerated decay rate is 
due to the advection of relative vorticity, i.e. it  is a nonlinear effect. Closer inspection 
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shows that the slope of the full simulation is essentially constant after the fifth data 
point for which the Rossby number is about 0.23. Before that the curve is slightly 
convex, and the rate of decay is thus not simply exponential. 

I n  figure 9 (b )  the peak velocity position according to the numerical integration is 
compared with the observed position. The solid line again denotes the case with all 
effects incorporated whereas the dotted line corresponds to the case of no diffusion 
and no free-surface effects. As expected the shift rate is slightly faster if diffusion and 
free-surface effects are incorporated. In  both cases there is a slight overshooting in 
the numerical solution as compared to the observations. The curves are however 
easily within the error of the positions of peak velocity (we estimate an error of at 
least 1 cm in certain cases). 

I n  figure 8 ( b )  the profile of the numerical integration at time t = 2.49TE is shown 
together with the observed velocity distribution. We note that the position of peak 
velocity is indicated well by the numerical solution (solid line), but the amplitude is 
a little too low. In figure 3 (c) the same distribution is shown with the fit from which 
the observed seventh data points in figures 9 (a) and 9 ( 6 )  were determined. There is 
a major difference between the observed velocity distribution and the numerical 
solution beyond the peak. The velocity profile has become much steeper in the 
laboratory than the solution of the set (13)-(15). Three possible causes can be 
discerned. First of all we took the linear Ekman pumping law (16) for the boundary 
condition a t  the bottom. Secondly, air drag at  the free surface has been neglected and 
thirdly surface tension has been assumed to  be negligible. The non-dimensional 
parameter associated with surface-tension effects is an order of magnitude smaller 
than the Froude number in these experiments (i t  is the ratio of the capillary length- 
scale and the typical lengthscale of the vortex), and this effect is therefore entirely 
negligible. Air drag (no cover over the tank was used in these experiments) leads to 
Ekman pumping a t  the free surface. A linear boundary-layer analysis, neglecting the 
curvature of the free surface, yields that the pumping a t  the free surface is 
(nondimensionally ) 

with 

where the subscripts refer to  water and air and p is the molecular viscosity and v the 
kinematic viscosity. For typical water and air temperatures we have A x 4.4 x lop3. 

The extra Ekman pumping increases the secondary radial motion. The correction 
to  u due to the surface pumping is an increasing function of radius. This leads to  an 
increased steepening but this effect again turned out (numerically) to be far too small 
to account for the discrepancy between the numerical solution and the observations. 

Also, it can easily be shown that the sidewall is not likely to play any role in an 
explanation for the discrepancy. A simple order of magnitude estimate based on the 
diffusion equation shows that for the influence of the sidewall to penetrate just a few 
centimeters into the interior much more time is needed than the actual lifetime of the 
vortices. 

By systematically performing the integration a t  later times, it was found that the 
discrepancy in steepness remains not only for Rossby numbers of 0(1) but also for 
Rossby numbers of an order of magnitude smaller. We performed the integration 
starting at a later time than the case of figure 8 (a). In figure 8 ( c )  we show the initial 
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condition which is of experiment 3 at time t = l.OT,. This corresponds to the third 
data point in figure 9. A t  this time (see table 2 )  the Rossby number has fallen to a 
value of E = 0.45. We integrated the evolution equations with the linear Ekman 
pumping law to the same time as that of figure 8 (b )  (the seventh data point in figure 
9). The result is shown in figure 8 ( d ) .  Having started with a smaller Rossby number, 
the peak amplitude is much better approximated by the numerical solution but the 
discrepancy in steepness remains. The amplitude decay of the numerical solutions 
starting at this later time runs exactly parallel to the solid curve in figure 9 (a) ,  and 
is everywhere very close to the observed amplitudes. It appears therefore that for 
moderate Rossby numbers (< 0.5, say) the linear Ekman pumping law is valid in the 
core of the vortex. 

However, we have to conclude that (16) is a bad approximation to the actual 
Ekman pumping rate for radii around and beyond the position of peak velocity. The 
actual Ekman pumping rate in the region of decreasing circulation is apparently 
higher than what is predicted by a linear boundary-layer analysis if the Rossby 
number is not negligibly small. In fact, beyond the peak where the relative vorticity 
is negative according to (16) there is Ekman suction into the boundary layer and we 
should therefore say that in that region the Ekman suction is not as strong as linear 
analysis predicts. 

Instead of using the linear law (16) we have also used the numerically determined 
Ekman pumping law of Rogers & Lance (1960). This only concerns solid-body 
rotation over an infinite plate but many authors have applied the result to other flow 
types (see Weidman 1976). Weidman gives an accurate approximation which in 
dimensionless form corresponds to an Ekman pumping law of the following form: 

with K = 1.36961, b = 0.353. r = v / r  is the angular velocity of the flow relative to the 
bottom plane. This is correct for all Rossby numbers but only for a constant positive 
angular velocity, i.e. for (cyclonic) solid-body rotation. In order to investigate 
whether this law might be applicable to flows with variable angular velocity, we have 
used this law for the boundary condition at  the bottom instead of (16). It clearly 
implies Ekman pumping instead of suction in the region beyond the peak and it will 
therefore lead to a faster steepening of the flow profiles. Integration of (13)-(15) 
showed that the steepening rate and amplitude decay with this law are far too high. 
The appropriate Ekman pumping law for vortices with finite Rossby numbers 
remains therefore an open question. 

4. Discussion 
The observations discussed in $2 show that the evolution of a typical stable 

laboratory cyclone is characterized by a distinctive steepening of the velocity 
profiles. The result of this is that the vorticity distribution changes to a form that is 
barotropically more unstable. The analysis presented in 93 shows that these changes 
are brought about by the presence of the interior Ekman circulation which results in 
the advection of relative vorticity. This is a nonlinear effect which also increases the 
decay rate (as compared to linear Ekman decay). For large-enough Froude numbers 
the effects of the advection of relative vorticity can be counteracted by the free- 
surface deformability. In  fact, if one neglects diffusion, and expands all variables in 
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Form change? 

Decay rate Widening/steepening Shift of v,,, 
Free surface < e-' widening outward 
Advection of vorticity > e-l steepening outward 
Lateral diffusion > e-l see caption outward 

t For cyclones only 

TABLE 3. A list of the effects of the mechanisms in the left-hand column on the evolution of (t 

typical laboratory vortex. The decay rate is measured relative to the case of linear Ekman decay. 
Regarding diffusion, in Kloosterziel (1990) it is shown that if an initial vorticity distribution w0(r) 
is square-integrable according to 

[:lwo(r)12exp(+ir2)rdr < 03, 

and if for some integer n 2 0 

w0(r) rd r  = 0, ... , wo(r) rZn-' dr = 0, 

then, if the vorticity evolves according to the diffusion equation, for large time the similarity 
solution 

C 
w ( r ,  t )  = - L,(+?/b(t)')exp ( -$'/b(t)') 

b(t)2n+2 

becomes dominant. Here c is a constant, b ( t )  = (2vt +L2)k, L ,  a Laguerre polynomial of order n, t the 
time and L some lengthscale. So, all vortices that satisfy this criterion for the same n will 
asymptotically tend to the same form. Their initial forms may be quite different though, and it is 
therefore well possible that certain profiles when scaled during their diffusive evolution become 
wider instead of steeper. These results can also be applied to tank vortices if their horizontal scale 
is small compared to the size of the tank. 

Froude number and Rossby number, then to first order in these parameters the 
evolution is given by 

(41) 
This is a mere linear combination of the results separately derived in @3.1 and 3.2. 
The first term within curly brackets gives the uniform spin-down of the vortex. The 
presence of the second term induces an acceleration of the decay rate and steepening 
of the profile, but the third term decelerates the decay and opposes the steepening 
of the flow profile of a cyclone. Depending on the relative magnitude of the 
parameters F and B, one of the two may dominate over the other. The effects of the 
three mechanisms - diffusion, free-surface deformability and advection of relative 
vorticity - are summarized in table 3. 

Usually, for practical reasons the evolution of the laboratory vortices could not be 
monitored for Rossby numbers smaller than the Froude number. The steepening 
effect was therefore dominantly present in the observations of the evolving 
laboratory vortices. 

By comparing the numerical solutions of (13)-(15) with the observations we 
inferred that the linear Ekman pumping law is not valid in the region of decreasing 
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velocity of the cyclones. The actual Ekman suction in that region is weaker (or the 
Ekman pumping stronger) because the faster steepening has to be due to a larger 
radial component of the interior Ekman circulation. Rogers & Lance’s (1960) Ekman 
pumping law for nonlinear spin-down has furthermore been contrasted with the 
observations. We find that it cannot be applied to the laboratory cyclones with finite 
Rossby numbers. 

By using (14) one can in principle determine the interior radial component of the 
Ekman circulation. Neglecting diffusion one has 

and with (15) one gets (neglecting free-surface effects) 

i a  
w(r,z  = 0 ; t )  = &--ru(r;t). 

r ar 

By measuring the rate of change of the azimuthal velocity and the vorticity, the 
vertical Ekman pumping can thus be determined. However, precision measurements 
are needed for this programme which are far beyond the precision allowed by the 
streakline photography technique that has been used by us. This has to be left 
therefore for future work. 
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kind willingness to provide us with the required technical instructions and 
specifications. The authors also thank Dr Leo Maas for a number of stimulating 
discussions on the spin-down process. R. C. K. gratefully acknowledges financial 
support from the working group on Meteorology and Physical Oceanography (MFO) 
of the Netherlands Organization of Scientific Research ( N W O )  and financial support 
by ONR/DARPA under the University Research Initiative Program no. N0014-86- 
K-0758. 

Appendix 
An exact solution of (22), for arbitrary F ,  solves the classical spin-up problem. This 
solution is found by tentatively putting q ( r , t )  = e-YtX(r), with X an arbitrary 
function. If this is substituted in (22) and the new variable 

y = -- 1 YF r 2  

21-y 
is introduced, one finds 

d 2 X  d X  
Y(1-YY)-+(1-2y)-+2X dY dY = 0, 

which is a standard hypergeometric differential equation (see Abramowitz and 
Stegun 1965). In this particular case the solution that is not singular at y = 0 is 

#(y) = 9 ( 2 ,  - 1 ; 1 ; y) = 2y - 1 (A 3) 
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(9 is a hypergeometric function). The value of y is determined by the following 
consideration of (18). The term on the right-hand side of (18) is the local vertical mass 
flux pumped into the interior at the bottom due to the convergence of the boundary- 
layer flow. On the left-hand side one first has the vortex stretching term that gives 
the rate of change of the local thickness of the free-surface perturbation, while the 
second term equals the divergence of the net radial mass flux in the interior. 
Multiplying (18) by r ,  and integrating from the tank centre (with which the vortex 
centre is assumed to coincide) to the tank wall, which is taken at  the non-dimensional 
position r = rT, one obtains 

(A 4) 
a 
gM('T, t )  + %TT( 1 + pr$)  = @rT, 

where M ( r , t )  = l q ( s , t ) s d s  

is proportional to the integrated mass deficit, relative to the equilibrium mass 
distribution. Mass conservation implies 

since the Ekman circulation merely redistributes mass (in fact, one has, by definition, 
M ( r T , t )  = 0). One is therefore left with the identity 

u(rT , t )  (1+pr$) = @ ( r T , t ) .  

The left-hand side here gives the mass flux into the passive sidewall layer (which has 
a sandwich structure consisting of a Ei-layer within a Ei-layer) needed for returning 
the radial mass flux, via the bottom Ekman layer, into the interior (see Greenspan 
1968). Vertical integration of the O(1) radial flux in the bottom boundary layer shows 
that it is equal to %. If one uses (19) in the above identity, neglecting diffusion, it 
follows that the azimuthal flow decays at  the tank wall (outside the sidewall 
boundary layer) according to 

v(rT, t )  = v(rT,O)exp (1 ~ S J r J  
This shows that necessarily 

1 
y = m '  

and if this is substituted in (A 3) with y as given by (A l),  it is found that 

For all t one has (mass conservation) 

It is readily seen that this particular solution corresponds to the case in which at 
t = 0 the fluid in the rotating tank is in solid-body rotation relative to the rotating 
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reference frame. It solves therefore the classical linear spin-down problem discussed 
by, for example, Greenspan & Howard (1963). In that paper the problem of solving 
(22) for the spin-up or spin-down problem was attacked by seeking an expansion in 
Froude number. At  both zero order and first order in the Froude number, the fluid 
was found to spin up as a solid body. The results derived here show that in fact no 
expansion in Froude number is necessary and that at  all orders the fluid spins up in 
the same way. 
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